
XOMO: Understanding Development Options for Autonomy

Tim Menzies∗

Computer Science,
Portland State University

tim@timmenzies.net

Julian Richardson
RIACS/USRA,

NASA Ames Research Center
julianr@email.arc.nasa.gov

Abstract

Autonomy is a key capability for future space explo-
ration, but uncertain risks in the development and deploy-
ment of autonomy systems create a barrier to its use.

Our broad goal is to remove this barrier by developing
a model which can quantify autonomy risk, and developing
tools and techniques which analyze this and other models,
e.g. COCOMO-II, to determine actions which can be taken
during project development to improve project outcome, for
example reducing cost and/or risk.

In this paper, we focus on the second of these — the
analysis of models to determine beneficial project actions.
We demonstrate that the trade space of project development
options can be analyzed by combiningXOMO — a general
framework we have developed for Monte Carlo simulation
of COCOMO-like models — with data mining (in particu-
lar, treatment learning), to determine those actions which
most improve project outcome. In this paper, we use XOMO
to simulate development options and measure their effects
according to three models: the COCOMO effort estimation
model, the COQUALMO defect model, and Ray Madachy’s
schedule risk model.

In a sample case study, the combination of XOMO and
treatment learning finds process options which halve the
mean development effort, halve the mean risk of schedule
over run, reduce the mean defect density by 85%, and sig-
nificantly reduce the variance on the above measures.

1 Introduction

Autonomy is a key capability for future space explo-
ration, but the risks and many unknowns in the development
and deployment of autonomy systems create a significant
barrier to its use.

∗To appear, 20th International Forum on COCOMO and Software Cost
Modeling, October 25-28, 2005, Los Angeles, California. Available on-
line athttp://timmenzies.net/pdf/05xomo.pdf .

Our broad goal is to remove this barrier by developing
a model which can quantify autonomy risk, and developing
tools and techniques which analyze this and other models,
e.g. COCOMO-II, to determine actions which can be taken
during project development to improve project outcome, for
example reducing cost and/or risk.

In this paper, we focus on the second of these — the
analysis of models to determine beneficial project actions.

At any stage in the development of a project, many as-
pects of the project are fixed, but there are options for
changing some aspects. We show that the trade space of
project development options can be analyzed by combin-
ing XOMO1 — a general framework we have developed for
Monte Carlo simulation of COCOMO-like models — with
data mining (in particular,treatment learning, to determine
those actions which most improve project outcome. In this
paper, we use XOMO to simulate development options and
measure their effects according to three models:

• The COCOMO effort estimation model [3, p29-57];
• The COQUALMO defect model [3, p254-268];
• The Madachy schedule risk model [3, 284-291].

The data miner used here is the TAR3treatment
learner [12]. Treatment learning assumes that we are all
busy people and busy people don’t need (or can’t use) com-
plex models. Rather, busy people need to know theleast
they need to do to achieve themostbenefits. For example,
when dealing with complex situations with many unknowns
(e.g. developing autonomous system), it can be a wise tactic
to focus your efforts on a small number of key factors rather
than expending great effort trying to control all possibilities.

Our approach can analyze large spaces of options for
projects at various stages in the development life cycle. In
the late stages of project development, we expect our mod-
els to have sufficient fidelity to recommend process im-
provements, especially during verification and validation,
to improve product quality. In the very early stages of de-
velopment, we believe that our tools are sufficiently fast that

1Download XOMO from hhtp://unbox.org/src/bash/
xomo. For help, seehttp://promise.unbox.org/DataXomo .

1

they can analyze large trade spaces and assist in selection of
mission architecture and design.

In a sample case study, XOMO and treatment achieve all
of the following:

1. The mean development effort will be nearly halved;
2. The mean risk of schedule over run will be halved;
3. The mean defects densities will be reduced by 85%.
4. The variance on the above measures will also be sig-

nificantly reduced.

The case study was fast to run: all the results shown be-
low took ten minutes to run on a standard computer (a Mac
OS X box running at 1.5GHz). Those ten minutes included
5000 runs of the model and five runs of the data miners.
Hence, this study gives us confidence that AI-based deci-
sion support agents can run fast enough to keep up with
humans debating software process options for autonomous
systems.

The rest of this paper describes how the XOMO models
and treatment learning were applied to the case study.

2 Autonomy Risk and Mitigations

The term ‘autonomous’ denotes different things to dif-
ferent people. In common usage, ‘autonomous’ systems are
those which can operate — at least partly — without human
interaction. In NASA’s manned space program, the term has
a narrower usage, referring to systems which can operate
— at least partly — without interaction with ground con-
trol. Systems which operate without any human operation
are termed automatic. For unmanned systems, the meanings
of the two terms coincide.

Autonomy has high potential impact for both manned
and unmanned space exploration: autonomy has a number
of benefits, and enables key capabilities such as automated
rendezvous and docking and integrated system health man-
agement (ISHM). Development and use of autonomous sys-
tems also entails risks. Especially in the context of manned
space exploration, perception of these risks is a barrier to
adoption of significant autonomy.

We believe that a tool which could identify and quantify
autonomy risks and mitigations would be assist control and
understanding of autonomy risks, and improve uptake of
autonomy technologies.

We are currently engaged in a NASA-funded project to
construct a model of risks and mitigations for autonomy.
The main components of the model:

• assist identification of risks and risk mitigations for au-
tonomy projects using detailed taxonomies of risks and
risk mitigations,

• quantify, using a COCOMO-like sub-model, risks and
mitigations which the model user has identified

• recommend risk mitigation strategies based on the
above computations.

The main part of this paper (§3 onwards) describes our
work on analyzing COCOMO-like models using XOMO. In
the next section, we set the scene, and provide a glimpse at
part of our risk taxonomy, by outlining some of the benefits
and risks of autonomy.

2.1 Benefits and Risks of Autonomy

Autonomy can increase capability, reliability, safety, and
reduce cost in many ways, including:

• mitigation of communications limitations:

– autonomy by definition reduces the reliance on
communication with ground control. This di-
rectly reduces mission risk — a JPL study [9]
of critical errors in unmanned flight concluded
that 41% of software anomalies were triggered
by communications uplink or downlink problems

– communications channels have limited band-
width and inherent delays in data delivery, in-
cluding light-time delays. Consequently, on-
board calculations can benefit from more accu-
rate and timely spacecraft state information. On-
board trajectory calculations can also reduce fuel
[8].

• Mitigation of human limitations:

– reduction in human error
– processing much larger amounts of data than can

be handled by humans
– reduction in amount of ground support necessary,

which may entail cost savings or allow ground
operators to carry out other tasks

• Enable new capabilities:

– increased science by reducing the need for tele-
operation, e.g. for autonomous rover operations
including single-cycle instrument placement and
’long traverse’ autonomous navigation and mo-
tion planning

– automated rendezvous and docking e.g. for on-
orbit assembly

A good example of the beneficial use of autonomy is the
Deep Impact mission [1], which hit comet Tempel 1 with a
450kg impactor on 4th July 2005. The high relative speeds
of the probe and the comet (over 10km/s), and trajectory un-
certainties due to the comet’s coma and other effects, meant
that a pre-calculated trajectory could not be guaranteed to
hit the comet. Due to light time delays, ground control
could not determine last-minute trajectory corrections, nor
correct faults that might occur in the hostile environment

2

Figure 1. Deep Impact autonomous trajec-
tory corrections. Image credit: NASA/JPL-
Caltech/UMD.

close to the comet. Autonomous trajectory corrections and
fault recovery allowed the mission to succeed.

In any potential use of autonomy, we have to weigh
the benefits of autonomy against potential risks, which can
mostly be present in the development and application of any
software system but may tend to be worse for autonomous
systems, for example:

• Requirements-related risks:

– Inconsistency, incompleteness
– Traceability — particularly for autonomous sys-

tems, it can be difficult to link high level require-
ments which state the desired behavior of the sys-
tem to low level requirements which are more ap-
propriate for implementation and testing

• Testing related risks:

– Autonomous systems typically sense and process
data from their physical environment, resulting in
a very large input space. Obtaining adequate test
case covered is therefore difficult.

– Autonomous systems are frequently concurrent
— it is hard to detect concurrency-related errors
through testing.

• experience-related risks: techniques used for imple-
menting autonomy have little track record in space
applications, and flight software developers are fre-
quently not experienced in developing such software

• Model-related risks:

– Autonomy systems frequently employ an internal
model of the system’s environment and possible
behaviors. Risks arise when the model may be
inaccurate or incorrect. The model is sometimes
explicit — for example in a planner as a set of
plan schemas — and sometimes not.

thousands of lines of codes
_ANY(ksloc, 2, 10000)

scale factors: exponential effect on effort
ANYi(prec, 1, 6)
ANYi(flex, 1, 6)
...
effort multipliers: linear effect on effort
ANYi(rely, 1, 5)
...
defect removal methods
_ANYi(automated_analysis, 1, 6)
_ANYi(peer_reviews, 1, 6)
_ANYi(execution_testing_and_tools, 1, 6)

calibration parameters
_ANY(a, 2.25,3.25)
_ANY(b, 0.9, 1.1)

function Prec()
return scaleFactor("prec",

prec())
...
function Effort() {

return A() * Ksloc() ˆ E() * Rely()* Data()* Cplx()*
Ruse()* Docu()* Time()* Stor()* Pvol()* Acap()*
Pcap()* Pcon()* Aexp()* Plex()* Ltex()* Tool()*
Site()* Sced() }

function E() {
return B() + 0.01*(Prec() + Flex()

+ Resl() + Team() + Pmat()) }

Figure 2. Part of XOMO specification of
COCOMO-II.

3 XOMO

Some existing COCOMO-like models, e.g. COCOMO
II, can be profitably analyzed in order to improve outcome
in autonomy development projects. While our model of
autonomy risk and mitigations is currently under construc-
tion, we believe it will also be COCOMO-like. We have
therefore developed a general framework for analysis of
COCOMO-like models; in this way we can develop and re-
tain a significant analysis capability without committing too
much to any particular model.

XOMO is a general framework for Monte Carlo simula-
tions that has been customized for processing COCOMO-
like models. Figure 2 shows part of the specification in
XOMO of COCOMO-II, illustrating the following XOMO
features:

• declaration of model inputs and allowed ranges (e.g.
prec , an integer in the range 1..6),

• the functional relationship (here,Effort()) be-
tween the model inputs and outputs,

• use of lookup tables to map model inputs to real values
like the COCOMO effort multipliers and scale factors.

Internally, XOMO generates code for computing the
model outputs efficiently using memoed, possible filtered,
functions. Experienced programmers can modify the auto-

3

generation process by editing XOMO’s macro expansion
files (which are written in the M4 language).

4 Case Study

XOMO model specifications define allowable ranges for
model inputs. When applying XOMO analysis in a devel-
opment particular project, the user can further restrict the
allowable ranges of model input variables to reflect project-
specific constraints (e.g. that the particular project subject
to analysis must have very good analysts). The command
line can set exact values (using the “-= ” flag) or can define
a range from some lower to upper value (using the “-l ” and
“ -u ” flags).

Using this syntax, we can define restrictions on CO-
COMO parameters corresponding to a fictitious case study:

-p ksloc -l 75 -u 125 : We assume that some
developer from a prior autonomy project has guess-
timate that this new project will require 75,000 to
125,000 lines of code.

-p rely -=5 : At NASA, everything must be have
highest reliability. In COCOMO,rely ’s maximum
value is very high; i.e. 5.

-p prec -= 1 : Since this team has never done this sort
of thing before, the precedence (orprec) is set to the
lowest value.

-p acap -= 5 : This team is skillful; i.e. has highest
analyst capability.

-p aexp -= 1 : Their experience in this kind of soft-
ware is non-existence.

-p cplx -= 6 : The software is very complex.

-p ltex -= 1 : The team has no experience with the
languages and tools used for autonomous systems.

-p ruse -= 6 : This team, in their enthusiasm, believe
that the tools they are building here will be reused by
many developers in the future.

5 Multi-Dimensional Optimization using
“BORE”

Our goal is reducing development effortand the risk of
schedule riskand the defect density in our code. Optimiz-
ing for all these three goals can be difficult. The last 3
columns of Figure 4 show scores from COCOMO, the risk
model, and COQUALMO. The rows are sorted by the CO-
QUALMO scores; i.e. by the estimated number of defects

runxomo() {
Scenario="-p ksloc -l 75 -u 125

-p rely -= 5
-p prec -= 1
-p acap -= 5
-p aexp -= 1
-p cplx -= 6
-p ltex -= 1
-p ruse -= 6"

xomo $Scenario }

Figure 3. XOMO: specifying restraints.

26 inputs 3 outputs
schedule

rely plex ksloc . . . pcap time aaeffort risk defects
5 1 118.80 . . . 5 3 5 2083 69 0.50
5 1 105.51 . . . 1 3 5 4441 326 0.86
5 4 89.26 . . . 3 5 3 1242 63 0.96
5 2 89.66 . . . 1 4 5 2118 133 2.30
5 1 105.45 . . . 2 4 5 6362 170 2.66
5 3 118.43 . . . 2 6 2 7813 112 4.85
5 4 110.84 . . . 4 4 4 4449 112 6.81

. . .

Figure 4. XOMO: output from Figure 3.

rely plex ksloc . . . pcap time aaeffort secdRisk defects
best:

5 4 89.26 . . . 3 5 3 1242 63 0.96
5 1 118.80 . . . 5 3 5 2083 69 0.50
5 2 89.66 . . . 1 4 5 2118 133 2.30

rest:
5 1 105.51 . . . 1 3 5 4441 326 0.86
5 4 110.84 . . . 4 4 4 4449 112 6.81
5 3 118.43 . . . 2 6 2 7813 112 4.85

Figure 5. BORE: classification of Figure 4.

4

per 1000 lines of code. Interestingly, high number of re-
maining defects are not correlated with high schedule risk
or development effort:

• The second and last rows havesimilar efforts but very
differentdefect densities.

• Row two has thehighestschedule risk but one of the
lowestdefect densities.

The reason for these non-correlations is simple: even
though the three models within XOMO using thesamevari-
ables, they predict fordifferentgoals. This complicates op-
timization since any gain achieved in one dimension may
have detrimental effects on other dimensions.

To model this multi-dimensional optimization problem,
XOMO uses a multi-dimensional classification scheme
called BORE (short for “best or rest”). BORE maps sim-
ulator outputs into a hypercube which has one dimension
for each utility; in our case, one dimension for effort, re-
maining defects, and schedule risk, These utilities are nor-
malized to “zero” for “worst”, and “one” for “best”. The
corner of the hypercube at 1,1,... is theapexof the cube and
represents the desired goal for the system. All the examples
are scored by their Euclidean distance to the apex. TheN
best examples closest to the apex are then labeledbest. A
random sample ofN of the remaining examples are then la-
beledrest. Figure 5 shows a BORE report of the threebest
and threerest examples from XOMO output. Note how the
average efforts, schedule risk, and defects are lower inbest
thanrest.

BORE’s classifications are passed to a data miner to find
what settings select forbestand avoid therest. Before de-
scribing that data mining process, we first describe the CO-
COMO, COQUALMO and schedule risk models that gen-
erated the output columns of Figure 4.

6 Models

This section describes the three models within XOMO:

• Boehm et.al.’s COCOMO-II (2000) model that com-
putes development effort;

• Madachy’s heuristic risk model that computes the risk
that schedules will over run;

• Boehm et.al.’s COQUALMO model that estimates the
number of defects remaining in delivered code;

6.1 The COCOMO Effort Model

COCOMO measures effort in calendar months where
one month is 152 hours (and includes development and
management hours). COCOMO assumes that as systems
grow in size, the effort required to create them grows ex-
ponentially, i.e. effort ∝ KSLOCx. More precisely,

vl l n h vh xh
Scale factors:
flex 5.07 4.05 3.04 2.03 1.01
pmat 7.80 6.24 4.68 3.12 1.56
prec 6.20 4.96 3.72 2.48 1.24
resl 7.07 5.65 4.24 2.83 1.41
team 5.48 4.38 3.29 2.19 1.01
Effort multipliers:
acap 1.42 1.19 1.00 0.85 0.71
aexp 1.22 1.10 1.00 0.88 0.81
cplx 0.73 0.87 1.00 1.17 1.34 1.74
data 0.90 1.00 1.14 1.28
docu 0.81 0.91 1.00 1.11 1.23
ltex 1.20 1.09 1.00 0.91 0.84
pcap 1.34 1.15 1.00 0.88 0.76
pcon 1.29 1.12 1.00 0.90 0.81
plex 1.19 1.09 1.00 0.91 0.85
pvol 0.87 1.00 1.15 1.30
rely 0.82 0.92 1.00 1.10 1.26
ruse 0.95 1.00 1.07 1.15 1.24
sced 1.43 1.14 1.00 1.00 1.00
site 1.22 1.09 1.00 0.93 0.86 0.80
stor 1.00 1.05 1.17 1.46
time 1.00 1.11 1.29 1.63
tool 1.17 1.09 1.00 0.90 0.78

Figure 6. COCOMO: co-efficients

COCOMO-II estimates development effort as a function of
the number of adjusted thousand lines of code, KSLOC, and
attributes of the development process divided into scale fac-
torsSF1...SF5: flex , pmat , prec , resl , team , and ef-
fort multipliersEM1...EM17: acap , aexp , cplx , data ,
docu , ltex , pcap , pcon , plex , pvol , rely , ruse ,
sced , site , stor , time , tool :

months = a ∗
(
KSLOC(b+0.01∗

∑5
i=1 SFi)

)
∗

(
17∏

j=1

EMj

)
(1)

Figure 2 showed the specification in XOMO of the CO-
COMO effort equation. Values such asflex=1 get con-
verted to numerics as follows. First, the integers{1, 2, 3, 4,
5, 6} are converted to the symbols{vl, l, n, h, vh, xh} (re-
spectively) representing very low, low, nominal, high, very
high, and extremely high. Next, these are mapped into the
look-up table of Figure 6.

Ideally, software effort-estimation models like
COCOMO-II should be tuned to their local domain.
Off-the-shelf “untuned” models have been up to 600%
inaccurate in their estimates, e.g. [15, p165] and [7].
However, tuned models can be far more accurate. For
example, [5] reports a study with a Bayesian tuning
algorithm using the COCOMO project database. After
Bayesian tuning, a cross-validation study showed that
COCOMO-II model produced estimates that are within
30% of the actuals, 69% of the time.

Elsewhere, with Boehm, Chen, Port, Hihn, and
Stukes [4, 11, 13, 14] we have explored calibration meth-
ods for COCOMO. Here, we take a new approach and ask

5

vl l n h vh xh
rely

sced vl 1 2
l 1

cplx
sced vl 1 2 4

l 1 2
n 1

time
sced vl 1 2 4

l 1 2
n 1

pvol
sced vl 1 2

l 1
tool

sced vl 2 1
l 1

pexp
sced vl 4 2 1

l 2 1
n 1

pcap
sced vl 4 2 1

l 2 1
n 1

aexp
sced vl 4 2 1

l 2 1
n 1

acap
sced vl 4 2 1

l 2 1
n 1

ltex
sced vl 2 1

l 1
pmat

sced vl 2 1
l 1

vl l n
acap

rely n 1
h 2 1

vh 4 2 1
pcap

rely n 1
h 2 1

vh 4 2 1
acap

cplx h 1
vh 2 1
xh 4 2 1

pcap
cplx h 1

vh 2 1
xh 4 2 1

tool
cplx h 1

vh 2 1
xh 4 2 1

pmat
rely n 1

h 2 1
vh 4 2 1

acap
pmat vl 2 1

l 1
acap

stor h 1
vh 2 1
xh 4 2 1

acap
time h 1

vh 2 1
xh 4 2 1

acap
tool vl 2 1

l 1
pcap

tool vl 2 1
l 1

vl l n
aexp

ruse h 1
vh 2 1
xh 4 2 1

ltex
ruse h 1

vh 2 1
xh 4 2 1

pcap
pmat vl 2 1

l 1
pcap

stor h 1
vh 2 1
xh 4 2 1

pcap
time h 1

vh 2 1
xh 4 2 1

pcap
ltex vl 4 2 1

l 2 1
n 1

pexp
pvol h 1

vh 2 1
pmat

tool vl 2 1
l 1

tool
time vh 1

xh 2 1
aexp

team vl 2 1
l 1

sced
team vl 2 1

l 1
site

team vl 2 1
l 1

Figure 7. SCED-RISK: the details. For example, looking at the top-left matrix, the Sced Rely risk is
highest when the reliability is very high but the schedule pressure is very tight.

rely data ruse docu cplx time stor pvol acap pcap pcon aexp plex ltex tool site sced
requirements:
xh 1.05 1.32 1.08 1.08 1.16 0.83
vh 0.7 1.07 1.03 0.86 1.21 1.05 1.05 1.1 0.75 1 0.82 0.81 0.9 0.93 0.92 0.89 0.85
h 0.85 1.04 1.02 0.93 1.1 1.03 1.03 1.05 0.87 1 0.91 0.91 0.95 0.97 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.22 0.93 0.95 1.08 0.88 0.86 1.17 1 1.11 1.12 1.05 1.04 1.05 1.1 1.09
vl 1.43 1.16 0.76 1.33 1 1.22 1.24 1.11 1.07 1.09 1.2 1.18
design:
xh 1.02 1.41 1.2 1.18 1.2 0.83
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.12 1.13 0.83 0.85 0.8 0.82 0.86 0.88 0.91 0.89 0.84
h 0.85 1.05 1 0.93 1.13 1.06 1.06 1.06 0.91 0.93 0.9 0.91 0.93 0.91 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.83 1.1 1.09 1.13 1.11 1.09 1.07 1.05 1.1 1.1
vl 1.45 1.18 0.71 1.2 1.17 1.25 1.22 1.17 1.13 1.1 1.2 1.19
coding:
xh 1.02 1.41 1.2 1.15 1.22 0.85
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.1 1.15 0.9 0.76 0.77 0.88 0.86 0.82 0.8 0.9 0.84
h 0.85 1.05 1 0.92 1.13 1.06 1.05 1.08 0.95 0.88 0.88 0.94 0.94 0.91 0.9 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.82 1.05 1.16 1.15 1.07 1.08 1.11 1.13 1.09 1.1
vl 1.45 1.18 0.71 1.11 1.32 1.3 1.13 1.16 1.22 1.25 1.18 1.19

Figure 8. COQUALMO: effort multipliers and defect introduction

6

rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Figure 9. SCED-RISK: an example risk table

“what conclusions hold across the space of possible tun-
ings”?. Hence we treat the tuning parameters “a” and “b”
as random variables (see Figure 2, last two lines).

6.2 SCED-RISK: a Heuristic Risk Model

The Madachy Heuristic Risk model (hereafter SCED-
RISK) was an experiment in explicating the heuristic na-
ture of effort estimation. It returns a heuristic estimate of
the chances of a schedule over run in the project. Val-
ues of 0-5 are considered to be “low risk”; 5-15 “medium
risk”; 15-50 “high risk”; and 50-100 “very high risk”.
Studies with the COCOMO-I project database have shown
that the Madachy SCED-RISK index correlates well with
months
KDSI (where KDSI is thousands of delivered source lines

of code) [10].
Internally, the model contains dozens of tables of the

form of Figure 9. Each such table adds some “riskiness”
value to the overall project risk. These tables are read as
follows. Consider the exceptional case of building high
reliability systems with very tight schedule pressure (i.e.
sced=vl or andrely=vh or vh). Recalling Figure 6,
the COCOMO co-efficients for these ranges are 1.43 (for
sced=vl) and 1.26 (forrely=vh). These co-efficients
also have a risk factor of 2 (see Figure 9). Hence, a
project with these two attribute ranges would contribute
1.43*1.26*2=3.6036 to the schedule risk.

The risk tables of the current model are shown in Fig-
ure 7.

6.3 COQUALMO: defect introduction, removal

COQUALMO models how process optionsadd andre-
movedefects to software duringrequirements, design, and
coding. For example, poor documentation leads to more er-
rors since developers lack the guidance required to code the
right system. So, Figure 8 offers its large defect introduc-
tion values when the effort multiplierdocu=vl is very low.
See also Figure 10 for the defects introduced by various set-
tings to the scale factors. For the purpose of our analysis,
we combine the estimates of requirements, design and cod-
ing defects into a single defect measure using a weighted
sum with weights 10, 20, 30 for requirements, design and
code defects respectively.

prec flex resl team pmat
requirements:
xh 0.7 1 0.76 0.75 0.73
vh 0.84 1 0.87 0.87 0.85
h 0.92 1 0.94 0.94 0.93
n 1 1 1 1 1
l 1.22 1 1.16 1.17 1.19
vl 1.43 1 1.32 1.34 1.38
design:
xh 0.75 1 0.7 0.8 0.61
vh 0.87 1 0.84 0.9 0.78
h 0.94 1 0.92 0.95 0.89
n 1 1 1 1 1
l 1.17 1 1.22 1.13 1.33
vl 1.34 1 1.43 1.26 1.65
coding:
xh 0.81 1 0.71 0.86 0.63
vh 0.9 1 0.84 0.92 0.79
h 0.95 1 0.92 0.96 0.9
n 1 1 1 1 1
l 1.12 1 1.21 1.09 1.3
vl 1.24 1 1.41 1.18 1.58

Figure 10. COQUALMO: scale factors and de-
fect introduction

automated peer executiontesting
analysis reviews and tools

requirements:
xh 0.4 0.7 0.6
vh 0.34 0.58 0.57
h 0.27 0.5 0.5
n 0.1 0.4 0.4
l 0 0.25 0.23
vl 0 0 0
design:
xh 0.5 0.78 0.7
vh 0.44 0.7 0.65
h 0.28 0.54 0.54
n 0.13 0.4 0.43
l 0 0.28 0.23
vl 0 0 0
coding:
xh 0.55 0.83 0.88
vh 0.48 0.73 0.78
h 0.3 0.6 0.69
n 0.2 0.48 0.58
l 0.1 0.3 0.38
vl 0 0 0

Figure 11. COQUALMO: defect removal

7

The defects remaining in software is the product of the
defects introduced (see Figure 10) times the percentage re-
moved (see Figure 11). These values are ratios per 1000
lines of code.

7 Learning

Once the above models run, and BORE classifies the
output intobest andrest, a data miner is used to find in-
put settings that select for the better outputs. This study
uses treatment learning since this learning method return
thesmallesttheories thatmosteffect the output. In terms of
software process changes, such minimal theories are use-
ful since they require the fewest management actions to im-
prove a project.

7.1 Treatment Learning

Treatment learning inputs a set of training examplesE.
Each example maps a set of attribute ranges to some class
symbol; i.e.{Ri, Rj , ... → C} The class symbolsC1, C2..
are stamped with some utility score that ranks the classes;
i.e. {U1 < U2 < .. < UC}. With E, these classes occur at
frequenciesF1%, F2%, ..., FC%. A treatmentT of sizeN
is a conjunction of attribute ranges{R1∧R2...∧RN}. Some
subset ofe ⊆ E are consistent with the treatment. In that
subset, the classes occur at frequenciesf1%, f2%, ...fC%.
A treatment learner seeks the seek smallestT which most
changes the weighted sum of the utilities times frequencies
of the classes. Formally, this is called thelift of a treat-
ment:

lift =
∑

C UCfC∑
C UCFC

Treatment learning is a weighted-class minimal contrast-
set association rule learner. The treatments are associa-
tions that occur with preferred classes. These treatments
serve to contrast undesirable situations with desirable sit-
uations where more of the outcomes are favorable. Treat-
ment learning is different to other contrast set learners like
STUCCO [2], since those other learners don’t focus on min-
imal theories.

Conceptually, a treatment learner explores all possi-
ble subsets of the attribute ranges looking for good treat-
ments. Such a search is impractical in practice so the art of
treatment learning is quickly pruning unpromising attribute
ranges. This study uses the TAR3 treatment learner [6] that
uses stochastic search to find its treatments.

7.2 Iterative Treatment Learning

Sometimes, one round of treatment learning is not
enough. Iterative treatment learningruns by conducting

Monte Carlo simulations over the ranges of any uncertain
variables. For example, there are 28 variables in the models
analyzed in our case study:

• Ksloc;
• 5 scale factors;
• 17 effort multipliers;
• 2 calibration parameters (“a,b ”);
• 3 defect removal activities (automated analysis, peer

reviews, execution testing and tools).

The restraints of Figure 3 only offer hard constraints
on seven of the variables:rely, prec, acap, ... 2.
XOMO’s Monte Carlos execute by picking random values
from valid ranges for all known inputs. After, say, 1000
Monte Carlo runs, BORE classifies the outputs as either the
100 best or 100 rest. The treatment learner studies the
results and notes which input ranges select forbest. The
ranges found by the learner then become restraints for fu-
ture simulations. The whole cycle looks like this:

restraintsi → simulationi → learn →
→ restraintsi+i → simulationi+1

8 Results

For this study the initial baseline restraints were set ac-
cording to our case study from§4.

XOMO was run 1000 times each iteration and BORE re-
turned the 100best examples and a random sample of 100
of therest. Thesebest andrest examples were passed to
TAR3 and the best learned treatment was imposed as re-
straints on subsequent iterations.

Figure 12 shows the restraints learned by four iterations
of iterative treatment learning. Figure 13 shows the effects
of these restraints on the output of theXOMOmodels:

1. The mean development effort was nearly halved: 3257
to 1780 months;

2. The mean SCED-RISK halved: 77 to 36;
3. The mean defects densities were reduced by 85% from

0.97 to 0.15.
4. The variances on the above measures were signifi-

cantly reduced: the COQUALMO and SCED-RISK
standard deviations nearly reached zero.

Several of the Figure 13 curves flatten out after 2000 runs
of XOMO. A parsimonious management strategy could be
formed from just the results of the first two rounds of learn-
ing. Interestingly, in those first two rounds, process changes
were more important than the application of technology.
Technology-based techniques such astool support orex-
ecution testing and tools did not arise till itera-
tion three. On the other hand, the first two iterations labeled

2The constraint onksloc is softer- it can vary from 75K to 125K).

8

 0 5 1
0

 1
5

 2
0

 2
5

4000

3000

2000

1000

baseline

nu
m

be
r

of
 r

es
tr

ai
nt

s

learned restraints
baseline 1000 2000 3000 4000
75≤ ksloc≤ 125
rely = 5
prec = 1
acap = 5
aexp = 1
cplx = 6
ltex = 1
ruse = 6

sced=4
peerreviews=5

pmat=5
pcap=4

tool=4
executiontesting-
and tools=5

team=5
resl=5
automated-
analysis=5

Figure 12. TAR3: learned restraints

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

 1
80

00

4000

3000

2000

1000

baseline

C
O

C
O

M
O

:
de

ve
lo

pm
en

t e
ffo

rt
 (

m
on

th
s)

m
ax m
in

m
ea

n sd

 0 1 2 3 4 5 6

4000

3000

2000

1000

baseline

C
O

Q
U

A
LO

M
O

:
de

fe
ct

s
pe

r
ks

lo
c

m
ax m
in

m
ea

n sd

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

4000

3000

2000

1000

baseline

S
C

E
D

-R
IS

K
:

ris
k

of
 s

ch
ed

ul
e

ov
er

 r
un

m
ax m
in

m
ea

n sd

Figure 13. TAR3: impact of Figure 12’s restraints.

“1000,2000” in Figure 12 want to decrease schedule pres-
sure (sced), increase process maturity (pmat), and pro-
grammer capability (pcap) and requested the user of peer
reviews.

Another interesting feature of the results is that many of
the inputs were never restrained. The left-hand-side plot
of Figure 12 shows that even after four rounds of learning,
only 17 of the 28 inputs were restrained. That is, manage-
ment commitments to 11 of the 28 inputs would have been
a waste of time. Further, if management is content with the
improvements gained from the first two iterations, then only
12 restraints are required and decisions about the remaining
16 inputs would have been superfluous.

9 Discussion

Software models like COCOMO, COQUALMO, and
SCED-RISK contain many assumptions about their domain.
The conclusions gained from these models should be scru-
tinized by domain experts. Early in the life cycle of a soft-
ware project, such scrutiny is complicated by all the un-
knowns associated with a project. Exploring all those un-
knowns can lead to massive data overload as domain ex-
perts are buried beneath a mountain of data coming from
their simulators.

Tools like XOMO, BORE, and treatment learners like
TAR3 can assist in that scrutiny. These tools can find au-

tomatically find software process decisions that reduce de-
fects and effort and risk of schedule over run. These tools
sample the space of options and report sample conclusions
within the space of possibilities.

To demonstrate that technique, this paper conducted a
case study with software development for autonomous sys-
tems. Certain special features of autonomous systems were
identified. These features included high complexity and lit-
tle experience with building these kinds of systems in the
past. These features were then mapped into general soft-
ware cost and risk models.

It is encouraging that the analysis is so fast: the above
case study took less than ten minutes to run on a standard
computer. Hence, we can use these tools during early life
cycle debates about options within a software project.

While the particular case study examined here is quite
specific, the analysis method is quite general. Our case
study related to autonomous systems, but there is noth-
ing stopping an analyst from using XOMO to study other
kinds of software development. The only requirement is
that the essential features of that software can be mapped
onto COCOMO-like models.

All the models used here contain most of their knowl-
edge in easy-to-modify tables representing the particulars
of different domains.

All the tools used here are portable and use simple
command-line switches that allow an analyst to quickly run

9

through a similar study for a different kind of project.

10 Acknowledgments

This research was conducted for RIACS (an institute of
the Universities Space Research Association (USRA)) un-
der a grant from NASA’s Exploration Systems Mission Di-
rectorate, and at Portland State University under USRA sub-
contract 8023-004. XOMO is available from the authors
under the GNU Public License (version 2: seewww.gnu.
org/copyleft/gpl.html). Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not con-
stitute or imply its endorsement by the United States Gov-
ernment.

References

[1] M. A’Hearn, A. Delamere, and W. Frazier. The deep
impact mission: Opening a new chapter in cometary
science. InProceedings 51st International Astronau-
tical Congress, october 2000. IAA-00-IAA.11.2.04.

[2] S. Bay and M. Pazzani. Detecting change in cat-
egorical data: Mining contrast sets. InProceed-
ings of the Fifth International Conference on Knowl-
edge Discovery and Data Mining, 1999. Available
from http://www.ics.uci.edu/˜pazzani/
Publications/stucco.pdf .

[3] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K.
Clark, B. Steece, A. W. Brown, S. Chulani, and
C. Abts. Software Cost Estimation with Cocomo II.
Prentice Hall, 2000.

[4] Z. Chen, T. Menzies, and D. Port. Feature sub-
set selection can improves software cost estimation.
In Proceedings, PROMISE workshop, ICSE 2005,
2005. Available fromhttp://menzies/pdf/
05/fsscocomo.pdf .

[5] S. Chulani, B. Boehm, and B. Steece. Bayesian anal-
ysis of empirical software engineering cost models.
IEEE Transaction on Software Engineerining, 25(4),
July/August 1999.

[6] Y. Hu. Treatment learning, 2002. Masters thesis, Un-
viersity of British Columbia, Department of Electrical
and Computer Engineering. In preperation.

[7] C. Kemerer. An empirical validation of software cost
estimation models. Communications of the ACM,
30(5):416–429, May 1987.

[8] S. Lee and A. G. Santo. Tradeoffs in functional allo-
cation between spacecraft autonomy and ground oper-
ations: the NEAR (Near Earth Asteroid Rendezvous)
experience, August 2004.

[9] R. Lutz. Patterns of software defect data on space-
craft. In2nd International Conference on Space Mis-
sion Challgenges for Information Technology, 2003.

[10] R. Madachy. Heuristic risk assessment using cost fac-
tors. IEEE Software, 14(3):51–59, May 1997.

[11] T. Menzies, Z. Chen, D. Port, and J. Hihn. Sim-
ple software cost estimation: Safe or unsafe?
In Proceedings, PROMISE workshop, ICSE 2005,
2005. Available fromhttp://menzies.us/
pdf/05safewhen.pdf .

[12] T. Menzies and Y. Hu. Data mining for very busy
people. InIEEE Computer, November 2003. Avail-
able fromhttp://menzies.us/pdf/03tar2.
pdf .

[13] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes.
Specialization and extrapolation of induced domain
models: Case studies in software effort estimation.
2005. IEEE ASE, 2005, Available fromhttp://
menzies.us/pdf/05learncost.pdf .

[14] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes.
Validation methods for calibrating software effort
models. InProceedings, ICSE, 2005. Available from
http://menzies.us/pdf/04coconut.pdf .

[15] T. Mukhopadhyay, S. Vicinanza, and M. Prietula. Ex-
amining the feasibility of a case-based reasoning tool
for software effort estimation.MIS Quarterly, pages
155–171, June 1992.

10

